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Binary random cellular structures
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~Received 2 June 1997!

A topological model for binary random cellular structures under neighbor-switching is presented. Perform-
ing exact analytical calculations, one obtains a bimodal cell shape distribution, whereas Aboav’s law for the
correlations between neighboring cells holds for each species separately. The binary character of the tessella-
tion is reduced with increasing disorder. The calculated topological properties are analyzed in comparison with
recent experimental studies of binary disc assemblies on an air table.@S1063-651X~98!51402-X#

PACS number~s!: 05.40.1j, 05.90.1m, 64.60.2i
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Recent thorough experimental and theoretical work
been devoted to the universal topological properties of tw
dimensional random cellular structures@1–5#, focusing on
the cell shape distribution and on the correlations betw
neighboring cells. The cell shape distribution is denoted
$pk%, wherepk is the probability that a randomly chosen ce
hask sides. In most natural random mosaics,$pk% is a nar-
row distribution peaked atk56, the average number of side
of the cells in mosaics with trivalent vertices. Correlatio
between neighboring cells are usually investigated by me
of the quantitykm(k), the average total number of sides
the neighbors of ak-sided cell. An empirical law@2# states
that this quantity varies linearly ink. These observation
have been confirmed in detailed experimental studies of
Laguerre-tessellations of mono-size disc arrangements o
air table @3#. Moreover the universal behavior of the ce
shape distribution, first noticed in@6#, has been established
Through slight inhomogeneities of the table, the discs re
range permanently and statistical equilibrium is achiev
For random tessellations in statistical equilibrium, froth
maximum entropy inference yields the empirically det
mined laws@1,7#.

In arrangements of discs with two different sizes on
air table, however, the topological properties of the tesse
tions change drastically@8#. At high packing fraction, one
observes bimodal cell shape distributions, andkm(k) for the
whole tessellation is no longer linear. The experimental
sults imply that Aboav’s law@2# holds instead for the neigh
bors of each species separately. These effects are less
nounced, when the density is reduced, and for vanish
density the patterns of two species are indistinguisha
Aboav’s law for binary assemblies is consistent with t
maximum-entropy theory@9#, but so far no topologica
model has been presented yet which may be applied to t
systems.

Formulating a topological model for a dynamical tess
lation, only those geometrical changes which affect the nu
ber of sides of cells, the topological transformations, are
importance. In two-dimensional systems of moving discs,
T1-transformation~neighbor switching! is the dominant pro-
cess~see Fig. 1!. Clearly, the possibility for such a process
severely constrained in a dense packing. But even at van
ing density, the topological dynamics turn out to be
stricted. In this case, the air table tessellations converg
the Poisson-Voronoi-tessellation, which is far away fro
571063-651X/98/57~2!/1219~4!/$15.00
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theoretically obtained structures, in which the neighb
switching occurs with minimal restrictions@10,11#. The to-
pological properties of mono-size disc assemblies on the
table are very similar to those of a model introduced by
Caër @12#, in which the possibilities for T1 transformation
are severely restricted. In order to make the connection
tween this model and the experiments, we consider the st
ture represented in Fig. 2~a! as a dynamical network, in
which the neighbor switching randomly occurs at the das
edges. Weighing the probability for the flip of a random
chosen dynamical edge withp if it is in the position of Fig.
2~a! and with 12p for the reverse process, the statistic
equilibrium properties coincide with the solution of L
Caër’s model @12#. Comparing theoretical and experiment
results and interpreting the parameterw5 u122pu as a mea-
sure of the packing fraction, one obtains an excellent ag
ment for dense packings. Clearly, the melting transition
companied by a change of slopes inkm(k) and the
occurrence of triangles or cells with more than eight sides
out of the scope of this theoretical approach. Neverthel
even in the low-density limit, this model still gives a fair fi
of the local topological ordering in the disc system.

Following this line, a simple model for binary random
cellular structures will be derived. Since in the limit of va
ishing density of discs all tessellations converge to the sa
structure, we require the low-density limit of our model to
identical with the model in@12# at p51/2 and this way
choose the arrangement of dynamical and fixed edges
order to obtain the transition from highest packing fraction
vanishing density, the dynamics are defined as follows: T
probabilities for the T1 transformations are chosen to be
dependent and weighted withp for the transformation on

FIG. 1. Neighbor switching in a random packing of discs.
R1219 © 1998 The American Physical Society
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dynamical edges, which are in their position of the den
packing structure, and with 12p for the reverse process. Th
dense packing structure of the discs on the air table in g
eral depends on the percentage and the size ratio of the
kinds of discs. The latter corresponds to the average num
of sides of the two classes of cells of the equivale
Laguerre-tessellations. The simplest choice for such a tes
lation is the regular lattice represented in Fig. 2~b!, which
can be subdivided into two equally weighted structures,
of which is built up by quadrilaterals (2) and the other by
octaeder (1), corresponding to the Laguerre cells of sm
and large discs, respectively. The T1 transformations are
stricted to the dashed edges. A possible realization of
disordered structure is represented in Fig. 3. The do
edges are flipped with respect to their position in Fig. 2~b! as
result of a T1 transformation with probabilityp.

Through the dynamics, the topological quantities co
verge to their stationary values. Consider a set ofN dynami-
cal edges, whereP l(p,N) is the probability thatl of them

FIG. 2. The dense packing structures of~a! the model in@12#
and~b! the model for a binary random structure. Dashed edges m
straight edges can never perform a T1 transformation.

FIG. 3. Possible realization of a disordered structure. T
dashed edges are in the state of Fig. 2~b!, the dotted edges ar
flipped with respect to this state.
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are flipped with respect to their initial position. Choosin
randomly an edge and applying a T1 transformation w
probability p to the edges which are in their initial positio
and with 12p to the flipped edges, the average change ofP l
for fixed p and N is given by DP l5b l 21P l 212a lP l
1a l 11P l 112b lP l , where a l5(12p) l /N and b l5
p(N2 l )/N. Repeating this procedure at a constant rate
time and performing the transition to the continuous tim
representation, it is not too hard to see thatP l approaches
exponentially its unique stationary solution, which is a bin
mial distribution:

P l~p,N!5S N

l D pl~12p!N2 l . ~1!

In order to determine the stationary cell shape distribution
our model, it is convenient to study the contributions of t
substructures separately. We definepk

(s) as the probability
that a randomly chosen cell from the structures, s56, hask
sides. Through the dynamics, each cell can be affected
four dynamical edges. The quadrilaterals represented in
2~b! gain one side per flip of these edges, the octaeder
one side. Thus, making use of the result~1!, we obtain the
stationary solutions

pk
~s!~w!5Pk24~ws,4!, ~2!

with ws5(11sw)/2 andw5122p. The total distribution,
obtained frompk5(pk

(1)1pk
(2))/2, is represented in Fig. 4

for three different values ofw. The symmetry of the problem
allows one to discuss the case 0<w<1 exclusively. For
largew, the cells with less than six sides almost exclusive
belong to the (2) structure. With decreasingw, the binary
character is reduced. Atw50, the two subdistributions in
Eq. ~2! are indistinguishable. This is exactly what is o
served on the air table@8#, if we interpret the parameterw as
a measure of the packing fraction. Our choice of the de
structure in Fig. 2~b! fixes a different size ratio than dis
cussed in@8#, and thus a quantitative comparison cannot
performed.

In order to determinekm(k), we consider the neighbor
of each species separately. Eachs cell has fourfixedneigh-
bors. They are exclusively (2s) cells; see Figs. 2~b! and 3.
Their average total number of sides is denoted as 4f k

(2s) .
The remaining (k24) dynamicalneighbors belong to the

y,

e

FIG. 4. Cell shape distributions for~a! w50.7, ~b! w50.5, and
~c! w50. The contributions from the quadrilaterals~octaeder! are
represented as white~black! bars. Grey bars represent the distrib
tion of Le Caër’s model @12#.
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same class as the central cell, their total number of sides
average (k24)dk

(s) . In this notation, the total number o
sides of cells adjacent to ak-sided cell from speciess reads

km~s!~k!54 f k
~2s!1~k24!dk

~s! . ~3!

The averages can be easily calculated. Keeping in mind
the average of 4f k

(s) just counts four times the average num
ber of sides ofs cells, we obtain(k4 f k

(2s)pk
(s)54^k& (2s)

with ^k& (s)5(kkpk
(s). The average number of sides of th

dynamical neighbors of one species is obtained with a s
lar argument:

(
k

~k24!dk
~s!pk

~s!5^k24&~s!^k&~s!1m2
~s! , ~4!

where the variance of pk
(s) is denoted as m2

(s)5

^(k2^k& (s))2&. Consider now the dynamical edges of t
fixed neighbors. Each fixed neighbor cell may be affec
simultaneously with the central cell by the flips of two d
namical edges. If one of these edges is flipped,k is lowered
or raised by 1, and the four fixed neighbors in common g
or lose two edges. The remaining dynamical edges are
connected from the central cell and flip independently. Th
in statistical equilibrium, their arrangement does not dep
on k, and we can summarize,

4 f k
~s!24 f k21

~s! 522. ~5!

The number of sides of each dynamical neighbor depend
the configuration of its three dynamical edges, which
disconnected from the central cell. Since their contributio
to all dynamical neighbor cells are identical,dk

(s) does not
depend onk. Making use of Eq.~4!, we obtaindk

(s)5d(s)

5^k& (s)1m2
(s)/^k24& (s). Putting it all together, Eq.~3! reads

km~s!~k!5~d~s!22!~k24!14022^k&~s!, ~6!

which is in agreement with the experimental observation
two linearkm(s)(k). The same result can be obtained as w
by making use of the microreversibility argument, intr
duced in @10#. The full contribution is given bykm(k)pk

5km(1)(k)pk
(1)1km(2)(k)pk

(2).Due to the different behav
ior of the subdistributionspk

(6) for nonvanishingw, the con-
tribution of km(2)(k) is dominant fork,6, whereas for
large cells km(1)(k) plays the important role. Since fo
wÞ0 these two contributions differ,km(k) is no longer lin-
ear ink. The two contributions and the fullkm(k) are rep-
resented in Fig. 5 for the extreme cases:w'1 ~a!, for which
the differences are largest, andw50~b!, for which the
km(s)(k) are identical. The difference in slopes in Eq.~6! is
not confirmed by the published experimental results. It f
lows from the dense packing structure represented in
2~b!, chosen here for its simplicity and its uniqueness, a
size ratio, which is the highest possible within the framewo
in
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of our approach. For this choice, all dynamical neighbors
part of the same class as the central cell, yielding the la
difference in slopes in Eq.~6!. Also the relative arrangemen
of the two different kinds of cells in this case turns out to
different from those observed in detailed studies of rand
packings@13#. Especially, the choice in Fig. 2~b! disables the
random arrangement of~1! and ~–! cells, which is to be
expected at vanishing density. Also, the maximum poss
value of 2/3 for the fraction of edges separating mixed nei
bors, which is obtained here for all values ofw, is not
achieved in experimental tessellations@13#. A better repro-
duction of the experimentally observed arrangements can
obtained at smaller differences in size, for which the de
packing structures turn out to be less restricted within
framework of our approach. This fact allows the construct
of less regular, more realistic high density arrangements
the two kinds of cells converging to the random limit
w50. The generalization of our calculations to such mo
complicated structures atw51 is straightforward though
technically more involved.

Summarizing, within the framework of the simple top
logical model presented here some of the striking topolog
properties of binary random cellular structures could be
tained. Comparing our results with experimental data for t
sellations of binary disc assemblies on the air table@8#, we
find a satisfactory agreement with the qualitative proper
of the cell shape distribution and also obtain two line
km(s)(k). A realistic arrangement of the cells of the tw
different kinds of discs, however, can only be achieved
more complicated dense packing structures than that
chosen here. The investigation of these structures and
generalization to different size ratii and arbitrary percenta
of the two kinds of cells are left to future work.

The author is grateful to V. Sperling, M. Lorenz, H. Hin
richsen, and D. Stoyan for numerous valuable discussion

FIG. 5. km(k) for ~a! w'1 and ~b! w50. The values of
km(1)(k) and km(2)(k) are represented as (1) and (2); black
circles represent the total contributionkm(k).
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