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Binary random cellular structures
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A topological model for binary random cellular structures under neighbor-switching is presented. Perform-
ing exact analytical calculations, one obtains a bimodal cell shape distribution, whereas Aboav's law for the
correlations between neighboring cells holds for each species separately. The binary character of the tessella-
tion is reduced with increasing disorder. The calculated topological properties are analyzed in comparison with
recent experimental studies of binary disc assemblies on an air [84l@63-651X98)51402-X]

PACS numbegps): 05.40-+j, 05.90+m, 64.60—i

Recent thorough experimental and theoretical work hasheoretically obtained structures, in which the neighbor-
been devoted to the universal topological properties of twoswitching occurs with minimal restrictio40,11]. The to-
dimensional random cellular structurgs-5], focusing on  pological properties of mono-size disc assemblies on the air
the cell shape distribution and on the correlations betweetgble are very similar to those of a model introduced by Le
neighboring cells. The cell shape distribution is denoted a€ae [12], in which the possibilities for T1 transformations
{py}, wherep, is the probability that a randomly chosen cell are severely restricted. In order to make the connection be-
hask sides. In most natural random mosaifs,} is a nar-  tween this model and the experiments, we consider the struc-
row distribution peaked &=6, the average number of sides ture represented in Fig.(@ as a dynamical network, in
of the cells in mosaics with trivalent vertices. Correlationswhich the neighbor switching randomly occurs at the dashed
between neighboring cells are usually investigated by meargdges. Weighing the probability for the flip of a randomly
of the quantitykm(k), the average total number of sides of chosen dynamical edge wihif it is in the position of Fig.
the neighbors of &-sided cell. An empirical law2] states  2(@) and with 1—-p for the reverse process, the statistical
that this quantity varies linearly ik. These observations equilibrium properties coincide with the solution of Le
have been confirmed in detailed experimental studies of theae&'s model[12]. Comparing theoretical and experimental
Laguerre-tessellations of mono-size disc arrangements on dasults and interpreting the parameter |1—2p| as a mea-
air table [3]. Moreover the universal behavior of the cell sure of the packing fraction, one obtains an excellent agree-
shape distribution, first noticed {i6], has been established. ment for dense packings. Clearly, the melting transition ac-
Through slight inhomogeneities of the table, the discs rearcompanied by a change of slopes km(k) and the
range permanently and statistical equilibrium is achievedoccurrence of triangles or cells with more than eight sides are
For random tessellations in statistical equilibrium, froths,out of the scope of this theoretical approach. Nevertheless,
maximum entropy inference yields the empirically deter-even in the low-density limit, this model still gives a fair fit
mined laws[1,7]. of the local topological ordering in the disc system.

In arrangements of discs with two different sizes on the Following this line, a simple model for binary random
air table, however, the topological properties of the tessellacellular structures will be derived. Since in the limit of van-
tions change drasticallj8]. At high packing fraction, one ishing density of discs all tessellations converge to the same
observes bimodal cell shape distributions, &na(k) for the  structure, we require the low-density limit of our model to be
whole tessellation is no longer linear. The experimental reidentical with the model inf12] at p=1/2 and this way
sults imply that Aboav’s law?2] holds instead for the neigh- choose the arrangement of dynamical and fixed edges. In
bors of each species separately. These effects are less p@yder to obtain the transition from highest packing fraction to
nounced, when the density is reduced, and for vanishinganishing density, the dynamics are defined as follows: The
density the patterns of two species are indistinguishableprobabilities for the T1 transformations are chosen to be in-
Aboav’s law for binary assemblies is consistent with thedependent and weighted with for the transformation on
maximum-entropy theory9], but so far no topological
model has been presented yet which may be applied to these
systems.

Formulating a topological model for a dynamical tessel-
lation, only those geometrical changes which affect the num-
ber of sides of cells, the topological transformations, are of
importance. In two-dimensional systems of moving discs, the
T1-transformatior(neighbor switchingis the dominant pro-
cess(see Fig. L Clearly, the possibility for such a process is
severely constrained in a dense packing. But even at vanish-
ing density, the topological dynamics turn out to be re-
stricted. In this case, the air table tessellations converge to
the Poisson-Voronoi-tessellation, which is far away from  FIG. 1. Neighbor switching in a random packing of discs.
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FIG. 4. Cell shape distributions f¢a) w=0.7, (b) w=0.5, and
(c) w=0. The contributions from the quadrilaterdlsctaeder are
represented as whii@lack) bars. Grey bars represent the distribu-
tion of Le Cae’s model[12].

a)

FIG. 2. The dense packing structures(af the model in[12]

and.(b) the model for a binary random structure. Das.hed edges mayyre flipped with respect to their initial position. Choosing

straight edges can never perform a T1 transformation. randomly an edge and applying a T1 transformation with
probability p to the edges which are in their initial position

dynamical edges, which are in their position of the densend with 1—p to the flipped edges, the average changH pf

packing structure, and with-1p for the reverse process. The for fixed p and N is given by AIl;=p,_1I1,_;— oI,

dense packing structure of the discs on the air table in gen+ o ¢11,,,— B/I1,, where a=(1—-p)I/N and B,=

eral depends on the percentage and the size ratio of the tws{N—1)/N. Repeating this procedure at a constant rate in

kinds of discs. The latter corresponds to the average numbetisne and performing the transition to the continuous time

of sides of the two classes of cells of the equivalentrepresentation, it is not too hard to see thhtapproaches

Laguerre-tessellations. The simplest choice for such a tessadxponentially its unique stationary solution, which is a bino-

lation is the regular lattice represented in Figb)2 which  mial distribution:

can be subdivided into two equally weighted structures, one

of which is built up by quadrilaterals<) and the other by N

octaeder ¢ ), corresponding to the Laguerre cells of small Hl(p=N):( | p'(1-pN". 1)

and large discs, respectively. The T1 transformations are re-

stricted to the dashed edges. A possible realization of the, orger to determine the stationary cell shape distribution of

disordered structure is represented in Fig. 3. The dotted,- model, it is convenient to study the contributions of the
edges are flipped with respect to their position in Figs) 2s substructures separately. We defip{é) as the probability

result of a T1 transform_atlon with proba_b|l|ty. . that a randomly chosen cell from the structaye= +, hask
Through the dynamics, the topological quantities con-

verge to their stationary values. Consider a s afynami- sides. Through the dynamics, each cell can be affected by
cal edges, wher&l,(p,N) is the probability that of them four dynamical edges. The quadrilaterals represented in Fig.

2(b) gain one side per flip of these edges, the octaeder lose
one side. Thus, making use of the regudlt, we obtain the
stationary solutions

P (W) =TI, _ 4(Wg,4), )

with wg=(1+sw)/2 andw=1-2p. The total distribution,
obtained fromp,= (p{")+p{))/2, is represented in Fig. 4
for three different values of. The symmetry of the problem
allows one to discuss the cases<1 exclusively. For
largew, the cells with less than six sides almost exclusively
belong to the ) structure. With decreasing, the binary
character is reduced. Av=0, the two subdistributions in
Eq. (2) are indistinguishable. This is exactly what is ob-
served on the air table], if we interpret the parametev as
a measure of the packing fraction. Our choice of the dense
structure in Fig. B) fixes a different size ratio than dis-
cussed in 8], and thus a quantitative comparison cannot be
performed.

In order to determin&km(k), we consider the neighbors
of each species separately. Eachell has fourfixed neigh-

FIG. 3. Possible realization of a disordered structure. ThePOrs. They are exclusively(s) cells; see Figs. ®) and 3.
dashed edges are in the state of Figh)2the dotted edges are Their average total number of sides is denoted &S %.
flipped with respect to this state. The remaining K—4) dynamical neighbors belong to the
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same class as the central cell, their total number of sides is in 50 — E—
average k—4)d® . In this notation, the total number of
sides of cells adjacent tolasided cell from species reads 45 | a) + b) b
kmO(k) =419+ (k—4)d® 3) 40 | ¥ 3
- k k . &\ -
= [ é 1 ]
The averages can be easily calculated. Keeping in mind that E 35 i :
the average of i‘,(f) just counts four times the average num- 30 3 1 ]
ber of sides ofs cells, we obtainS4f{ 9p{®=4(k)(~9 ]
with (k)®=3kp{®. The average number of sides of the 25 |/ ¥ ]
dynamical neighbors of one species is obtained with a simi- ;
lar argument: 20 EEE——— L1
4 5 6 7 8 4 5 6 7 8
k k
k—4)d®p(S = (k—4)S(K)O + 19 4)
; (k=) pi = (k=4) ()™ 1 FIG. 5. km(k) for (8 w~1 and (b) w=0. The values of

km(") (k) and km(7)(k) are represented as+( and (—); black
where the variance ofp{® is denoted asuS)=  circles represent the total contributim(k).
{(k—(k)®)2). Consider now the dynamical edges of the
fixed neighbors. Each fixed neighbor cell may be affected

simultaneously with the central cell by the flips of two dy- ot 5, approach. For this choice, all dynamical neighbors are

Q?rrgicszl deggis';;(??ﬁeogotgreﬁfegdggs ;St)gigpiﬁ%olfnvﬁéﬁd 4 part of the same class as the central cell, yielding the large
or lose twoyeéiges The remaining d)g/namical edges areg di%_ifff(;rence :jnﬁ:s Iopeskin E qﬁ])c' Alﬁqo thehrelative arrangementt)

. e the two different kinds of cells in this case turns out to be
connected from the central cell and flip independently. ThuSgiterent from those observed in detailed studies of random
in statistical equilibrium, thelr arrangement does not depe”‘gackings[lis]. Especially, the choice in Fig(8) disables the
onk, and we can summarize, random arrangement df+) and (-) cells, which is to be

expected at vanishing density. Also, the maximum possible

AfS—4f =2, (5 value of 2/3 for the fraction of edges separating mixed neigh-

) _ ) bors, which is obtained here for all values wf is not
The number of sides of each dynamical neighbor depends oschieved in experimental tessellatiofis]. A better repro-
the configuration of its three dynamical edges, which argjyction of the experimentally observed arrangements can be
disconnected from the central cell. S-lnce.the;r contributiongyptained at smaller differences in size, for which the dense
to all dynamical neighbor cells are identicall® does not packing structures turn out to be less restricted within the
depend ork. Making use of Eq.4), we obtaind{®=d®  framework of our approach. This fact allows the construction
=(k)+ 1/ (k—4)O®. Putting it all together, Eq3) reads  of less regular, more realistic high density arrangements of
the two kinds of cells converging to the random limit at
km®(k)=(d®—2)(k—4)+ 40— 2<k>(s)' (6) w=0.'The generalization of our calcqlations to such more
complicated structures at/=1 is straightforward though

which is in agreement with the experimental observation otechnically more involved. _
two linearkm®(k). The same result can be obtained as well Summarizing, within the framework of the simple topo-
by making use of the microreversibility argument, intro- logical model presented here some of the striking topological
duced in[10]. The full contribution is given bykm(k)py prpperties of binary random cel[ular structures could be ob-
=kmM) (k) p{ )+ km()(k)p{ ). Due to the different behav- tained. Comparing our results with experimental data for tes-
ior of the subdistribution;;)(ki) for nonvanishingw, the con- sellations of binary disc assemblies on the air tdBle we
tribution of km(~)(k) is dominant fork<6 wh’ereas for find a satisfactory agreement with the qualitative properties
large cellskm(*)(k) plays the important role. Since for O the cell shape distribution and also obtain two linear
W0 these two contributions diffekm(K) is no longer fin- km®(k). A realistic arrangement of the cells of the two
ear ink. The two contributions and the fukim(k) are rep- different kinds of discs, however, can only be achieved for
resented in Fig. 5 for the extreme casas:1 (a), for which more complicated dense packing structures than that one
the differenceé are largest an/d=0(b). for ’which the chosen here. The investigation of these structures and their

km(®(k) are identical. The difference in slopes in B8) is generalization to different size ratii and arbitrary percentages

not confirmed by the published experimental results. It foI—Of the two kinds of cells are left to future work.

lows from the dense packing structure represented in Fig. The author is grateful to V. Sperling, M. Lorenz, H. Hin-
2(b), chosen here for its simplicity and its uniqueness, at aichsen, and D. Stoyan for numerous valuable discussions.
size ratio, which is the highest possible within the framework
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